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Abstract

Supergravity [1] [2] [3] [4] is a type of quantum theory of elementary particles and their

interactions that is based on the particle symmetry known as supersymmetry and that

naturally includes gravity along with the other fundamental forces (the electromagnetic

force, the weak nuclear force, and the strong nuclear force).

The electromagnetic and the weak forces are now understood to be different facets of

a single underlying force that is described by the electroweak theory. Further unification

of all four fundamental forces in a single quantum theory is a major goal of theoretical

physics. Gravity, however, has proved difficult to treat with any quantum theory that

describes the other forces in terms of messenger particles that are exchanged between

interacting particles of matter. General relativity, which relates the gravitational force to

the curvature of space-time, provides a respectable theory of gravity on a larger scale. To

be consistent with general relativity, gravity at the quantum level must be carried by a

particle, called the graviton, with an intrinsic angular momentum (spin) of 2 units, unlike

the other fundamental forces, whose carriers (e.g., the photon and the gluon) have a spin

of 1.

A particle with the properties of the graviton appears naturally in certain theories based

on supersymmetry, a symmetry that relates fermions (particles with half-integral values of

spin) and bosons (particles with integral values of spin). In these theories supersymmetry

is treated as a ”local” symmetry; in other words, its transformations vary over space-time,

unlike a ”global” symmetry, which transforms uniformly over space-time. Treating su-

persymmetry in this way relates it to general relativity, and so gravity is automatically

included. Moreover, these supergravity theories seem to be free from various infinite quan-

tities that usually arise in quantum theories of gravity. This is due to the effects of the

additional particles that supersymmetry predicts (every particle must have a supersym-

metric partner with the other type of spin). In the simplest form of supergravity, the only
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particles that exist are the graviton with spin 2 and its fermionic partner, the gravitino,

with spin 3/2. (Neither has yet been observed.) More complicated variants also include

particles with spin 1, spin 1/2, and spin 0, all of which are needed to account for the known

particles. These variants, however, also predict many more particles than are known at

present, and it is difficult to know how to relate the particles in the theory to those that

do exist.
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Chapter 1

Introduction

1.1 Review of Supersymmetry

Supersymmetry [5] [6] [7] is a symmetry between boson and fermion fields. The reason

why we try to search for such a symmetry because bosons are the mediators of interaction:

their statistics allows for a coherent superpositions and thus for a macroscopic force, such

as the Coulomb force. On the other hand, fermions are the constituents of matter: their

statistics is translated at the macroscopic level into the additive character of matter. Hence

it is natural to ask such a fundamental question whether there exists a symmetry which

unifies matter and radiation.

In supersymmetry, the supersymmetry charge, Qr which, by convention, is chosen to

be a Majorana spinor. And the basic supersymmetry algebra reads:

{Qr, Q̄s} = 2γµrsPµ

[Qr, P
µ] = 0

[Qr,M
µν ] = iσµν

rsQs,

where Q̄r = (QTγ0)r and σ
µν = 1

4
[γµγν ]. The last relation simply means that Qr transform

as a spinor in spacetime rotations.

The two basic supermultiplets are (spin 0/spin 1
2
) and (spin 1/spin 1

2
). The former

one which is called chiral supermultiplet involves a complex scalar field and a spinor field

chosen to be real (Majorana) or to have a given helicity (Weyl). The latter involves a real

vector field and a Majorana spinor field and is called vector supermultiplet. If a gauage
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symmetry is associated. The vector is a gauage field and its supersymmetric partner is

called a gaugino.

In Wess-Zumino model, a chiral supermultiplet consists of a complex scalar field ϕ(x) =

(A(x) + iB(x))/
√
2 and a majorana spinor field Ψ(x). And the number of bosonic and

ferminonic degrees of freedom of the chiral supermultiplet are only equal on-shell. Consider

a free field Lagrangian

L = ∂µϕ∗∂µϕ−m2ϕ∗ϕ+
1

2
Ψ̄(iγµ∂µ −m)Ψ,

It is invariant under the infinitesimal supersymmetry transformation

δA = ϵ̄Ψ,

δB = iϵ̄γ5Ψ,

δΨr = −[iγµ∂µ(A+ iBγ5) +m(A+ iBγ5)]rsϵs

where ϵs is the Majorana spinor parameter of the transformation. But this causes a problem

since the algebra of supersymmetry no longer closes off-shell. However we can introduce

auxiliary fields, and this provides us with a formulation of supersymmetry where the algebra

closes off-shell.

Let us introduce a complex scalar field F (x) = (F1(x) + iF2(x))/
√
2 which serves the

purpose as an auxiliary field. And consider the Lagarangian

L = ∂µϕ∗∂µϕ+
1

2
Ψ̄(iγµ∂µ −m)Ψ + Laux

where

Laux = F ∗F +m(Fϕ+ F ∗ϕ∗).

As F has no kinetic term, there is no dynamical degrees of freedom associated with it. And

it can be solved by considering its equation of motion F = −mϕ∗. Hence one can recovers

the on-shell case. In this formulation, the supersymmetry transformations read:

δA = ϵ̄Ψ,
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δB = iϵ̄γ5Ψ,

δΨr = [−iγµ∂µ(A+ iBγ5) + F1 − iF2γ5]ϵ,

δF1 = −iϵ̄γµ∂µΨ,

δF2 = −ϵ̄γµγ5∂µΨ.

Again we can recover the transformations of the on-shell case if one use the equation of

motion F = −mϕ∗. When without making use of the equation of motion, in this formu-

lation the supersymmetry algebra closes off-shell. Now we have an off-shell formulation of

supersymmetry: the number of off-shell bonsonic degrees of freedom equals the number of

off-shell fermionic degrees of freedom when the auxiliary fields are introduced.

To include the case with interactions, we consider the Lagrangian

L = ∂µϕ∗∂µϕ+
1

2
Ψ̄(iγµ∂µ−m)Ψ−λ(ϕΨ̄RΨL+ϕ

∗Ψ̄LΨR)+F
∗F+F (mϕ+λϕ2)+F ∗(mϕ∗+λϕ∗2).

And it is invariant under the previous supersymmetry transformations

δA = ϵ̄Ψ,

δB = iϵ̄γ5Ψ,

δΨr = [−iγµ∂µ(A+ iBγ5) + F1 − iF2γ5]ϵ,

δF1 = −iϵ̄γµ∂µΨ,

δF2 = −ϵ̄γµγ5∂µΨ.

Solving for F = −(mϕ∗ + λϕ∗2) yields

L = ∂µϕ∗∂µϕ+
1

2
Ψ̄(iγµ∂µ −m)Ψ− λ(ϕΨ̄RΨL + ϕ∗Ψ̄LΨR)− V (ϕ)

with V (ϕ) = |mϕ + λϕ2|2. We can introduce the function W (ϕ) = 1
2
mϕ2 + 1

3
λϕ3 which is

analytic in the field ϕ and is called the superpotential. All interaction terms involve the

superpotential and its derivatives

dW

dϕ
= mϕ+ λϕ2,

3



d2W

dϕ2
= m+ 2λϕ.

When we are dealing with Standard Model of electroweak interactions, we will use

spinors of definite chirality or Weyl spinors. A Weyl spinor has the same on-shell degrees

of freedom as Majorana Spinot which is two because out of the four degrees of freedoms of

a Dirac spinor, two are projected out by performing the chirality projection. The free field

Lagrangain for the chiral supermultiplet with a Weyl Spinor is

L = ∂µϕ∗∂µϕ+ Ψ̄Liγ
µ∂µΨL − 1

2
m(Ψ̄c

RΨL + Ψ̄LΨ
c
R) + F ∗F +m(Fϕ+ F ∗ϕ∗).

And it is invariant under the supersymmetry transformation

δϕ =
√
2ϵ̄ΨL,

δΨL =
1− γ5

2
[F − iγµ∂µϕ]ϵ

√
2,

δF = −i
√
2ϵ̄γµ∂µΨL

where ϵ is the Majorana spinor of the transformation. This supersymmetry transfor-

mation to the one we found in Majorana Spinor, i.e., δA = ϵ̄Ψ, δB = iϵ̄γ5Ψ, δΨr =

[−iγµ∂µ(A+ iBγ5)+F1− iF2γ5]ϵ, δF1 = −iϵ̄γµ∂µΨ and δF2 = −ϵ̄γµγ5∂µΨ except the term

(1 − γ5)/2 appears in the transformation law of the fermion field. And this term is the

chirality projector. Its existence is to ensure that it remains left-handed under a super-

symmetry transformation. If we take the hermitian conjugate of the above supersymmetry

transformation, we get

δϕ∗ =
√
2ϵ̄Ψc

R,

δΨc
R =

1 + γ5
2

[F ∗ − iγµ∂µϕ
∗]ϵ

√
2,

δF ∗ = −i
√
2ϵ̄γµ∂µΨ

c
R

where Ψc
R = C(Ψ̄L)

T .

It can also be easily shown that if we include the interactions to the above free La-

grangian with a special attention to charlities, we will have

L = ∂µϕ∗∂µϕ+ Ψ̄Liγ
µ∂µΨL − 1

2
m(Ψ̄c

RΨL + Ψ̄LΨ
c
R)− λ(ϕΨ̄c

RΨL + ϕ∗Ψ̄LΨ
c
R) + F ∗F
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+F (mϕ+ λϕ2) + F ∗(mϕ∗ + λϕ∗2).

For vector supermultiplet, the off-shell formulation contains a real vector field Aµ, a

Majorana spinor λ and a real auxiliary pseudoscalar field D. Hence in this off-shell formu-

lation, we have 3+1 bosonic degrees of freedom and 4 fermionic degrees of freedom. In the

on-shell case, we have two bosonic and two ferminoic degrees of freedom since the auxiliary

field is no longer independent. The free field Lagrangian is

L = −1

4
F µνFµν +

1

2
λ̄iγµ∂µλ+

1

2
D2

where Fµν = ∂µAν − ∂νAµ. And it is invariant under the abelian gauage transformation:

δgAµ = −1

g
∂µθ,

δgλr = 0,

δgD = 0.

And it is also invariant under the supersymmetry transformation

δsAµ = ϵ̄γµγ5λ,

δsλr = −Dϵ+ r +
1

2
(σµνγ5ϵ)rFµν ,

δsD = −iϵ̄γµγ5∂µλ.

To couple a chiral supermultiplet with an abelian gauage supermultiplet, first we con-

sider the Lagrangian

L = Dµϕ∗Dµϕ+ Ψ̄Liγ
µDµΨL + F ∗F + gq(Dϕ∗ϕ+

√
2λ̄ΨLϕ

∗ +
√
2λ̄Ψc

Rϕ)

where Dµ = ∂µ − igqAµ is the covariant derivative , g is the gauge coupling and q the U(1)

charge. And it can be shown that it is invariant under

δsAµ = ϵ̄γµγ5λ,

δsλr = −Dϵ+ r +
1

2
(σµνγ5ϵ)rFµν ,
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δsD = −iϵ̄γµγ5∂µλ,

and the variation of

δϕ =
√
2ϵ̄ΨL,

δΨL =
1− γ5

2
[F − iγµDµϕ]ϵ

√
2,

δF = −i
√
2ϵ̄γµDµΨL − 2gqϕϵ̄

1 + γ5
2

λ.

To obtain the supersymmetric theory of a chiral supermultiplet coupled with an abelian

gauge supermultiplet, we just simply add this Lagrangian with the free field Lagrangian of

the Vector supermultiplet.

For nonabelian gauage theories, we can easily generalise it as follows. Let us consider a

gauge group G with coupling constant g and structure constants Cabc. The generator of the

group satisfies [ta, tb] = iCabctc. Then we can form a gauge supermultiplet with a gaugino

λa, and a real auxiliary Da for each gauge vector field Aa
µ. The free field Lagrangian is

L = −1

4
F aµνF a

µν +
1

2
λ̄aiγµDµλ

a +
1

2
DaDa

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gCabcAb

µA
c
ν

and

Dµλ
a = ∂µλ

a + gCabcAb
µλ

c

are, respectively, the covariant field strength and the covariant derivative of the gaugino

field.

1.2 Review of General Relativity

Since supersymmetry is a spacetime symmetry, local symmetry necesssary involves gravi-

tation. Local symmetry is, therefore, also referred to as supergravity. In this section, we

review general relativity, [8] [9] [10] for the classical theory of gravitation whose supersym-

metry extension naturally lead to supergravity.
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General relativity requires the law of physics to be the same of any observer, be they

in a co-ordinate system which is rotating, accelerating, or whatever. This means that the

equations describing the laws of physics take the tensor form. Since the derivative of a

scalar function gives us a vector function. It is therefore to ask whether the derivative

of a tensor function results in a tensor with rank higher than one. Consider the general

co-ordinate transformation of ∂V µ

∂xν , where V
µ is a contravariant vector. Under the general

co-ordinate transformation, we have

∂V µ

∂xν
→ ∂xσ

∂x′ν

∂x
′µ

∂xρ
∂V ρ

∂xσ
+
∂xσ

∂x′ν

∂2x
′µ

∂xσ∂xρ
V ρ.

The presence of the second term shows that ∂V µ

∂xν does not transform as a tensor. Hence we

introduce a covariant derivative,

DνV
µ ≡ ∂νV

µ + Γµ
ρνV

ρ

where Γµ
ρν is a connection field. Unlike ordinary derivatives, covariant derivatives do not

commute. And we have

[Dµ, Dν ]V
ρ = Rρ

τµνV
τ + 2Aτ

µνDτV
ρ

where

Rρ
τµν = ∂µΓ

ρ
τν − ∂νΓ

ρ
τµ + Γρ

σµΓ
σ
τν − Γρ

σνΓ
σ
τµ

defines the Riemann curvature tensor, and Aτ
µν is the torsion tensor.

So far we have no mention of the metric tensor in our discussion of the covariant

derivative, the connection or even the curvature tensor. In the standard general relativity,

we assume that spacetime is a Riemannian manifold. Riemannian manifolds, which are

manifolds on which a metric can be defined, form a natural setting for formulating general

relativity. On such a manifold, the differential line element is given by

ds2 = gµν(x)dx
µdxν .

The metric tensors can be used to raise and lower indices in general relativity. To obtain

the field equations of general relativity from an action principle, we can try to find an
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appropiate Lagrangian density, and vary the corresponding action S =
∫
Ld4x. And the

Lagrangian density for the gravitational field is

L = − 1

2κ2
√
−gR

where κ−2 has the dimension of mass squared and R is the Ricci scalar. By using Palatini

formalism wherein the connection fields and their derivatives are regarded as independent

fields along with gµν(x), it leads to Einstein’s field equations in a vacuum,

Rµν −
1

2
gµνR = 0.

So far the previous formulation of general relativity can admit fields transforming as

scalars, vectors, and tensors. In supersymmetry, we must necessarily include spinor fields

as well, but there exist no generalisation of Spinorial Lorentz transformation rules to gen-

eral co-ordinate transformations: mathematically speaking, the group GL(4) has no finite

dimensional spinor representations. What is done instead yo define, for every point on the

curve spacetime, a tangent space with a flat Minkowski metric on which the spinor may

transform. Thus the action we construct should be invariant under general co-ordinate

transformations on the curved manifold, and invariant under the local Lorentz transfor-

mation on the flat tangent space. To do so, We would like to introduce the a basis of

orthonormal vectors at each point in spacetime, eaµ(x), which we call the vielbein. The

index refers to indices on the spacetime manifold (which is curved in general), while the

index labels the different basis vectors. These objects allow us to convert from manifold

coordinates to tangent space coordinates. In particular, we can go from the curved-space

indices of a warped spacetime to flat-space indices that spinors understand. The choice of

an orthonormal basis of tangent vectors means that

eaµ(x)eaν(x) = gµν

where the a index is raised and lowered with the flat space (Minkowski) metric. In this sense

the vielbeins can be thought of as ‘square roots of the metric that relate flat and curved

8



coordinates. Moreover, we could have arbitrarily defined the tangent space z-direction

pointing in one direction or another relative to the manifold’ss basis so long as the two

directions are related by a Lorentz transformation. Thus we have an symmetry (or whatever

symmetry applies to the manifold). Further, we could have made this arbitrary choice

independently for each point in spacetime. This means that the symmetry is local, i.e. it is

a gauge symmetry. Like any other gauge symmetry, we are required to introduce a gauge

field for the Lorentz group, which we shall call ωa
µν(x).From the point of view of Riemannian

geometry this is just the connection, so we can alternately call it the spin connection. In

particular, any vector field with manifold indices, V µ(x),can now be recast as a vector field

with tangent-space indices, i.e., V a = eaµ(x)V
µ(x). Note that the covariant derivative is

defined as usual for multi-index objects: a partial derivative followed by a connection term

for each index. For the manifold index theres a Christoffel connection, while for the tangent

space index theres a spin connection:

Dµe
a
ν(x) = ∂µe

a
ν − Γλ

µνe
a
λ + ωa

µbe
b
ν .

By requiring that both objects have the same covariant derivative, we get the constraint

Dµe
a
µ(x) = 0.

And the spin connection fields ωab
µ can be constructed from knowledge of the vierbein via,

ωab
µ =

1

2
eaν(∂µe

b
ν − ∂νe

b
µ +

1

4
eaρebσ(∂σe

c
ρ − ∂ρe

c
σ)ecµ − (a↔ b).

1.3 Review of Superspace

In this section, we give a breif review of superspace [11] [12]. An arbitary function of

translated or Lorentz transformed corrdinates can be represented by

f(x+ a) = exp(iaµPµ)f(x) = expaµ∂µ f(x),

f(Λx) = exp(− i

2
θµνLµν)f(x) = exp

1
2
θµν(xµ∂ν−xν∂µ) f(x).

9



We can extend it to the supersymmetry transformations. In other words, we can generalise

space adding new coordinates such that a supersymmetry transformation is nothing else

than a translation in these new coordinates. Since the supersymmetry generators Qα

and Q̄α̇ have fermionic anticommuting character, the same will be true for these new

coordinates, θα and θ̄α̇. We rewrite the generators of supersymmetry transformations with

these coordinares and their derivatives. We have

Qα = a
d

∂θα
+ b(σµθ̄)α∂µ,

Q̄α = ā
d

∂θ̄α̇
+ b̄(σµθ)α̇∂µ.

with a, b, ā, b̄ are complex numbers. A generic field of the coordinates xµ, θαθ̄α̇ is called

a superfield. A superfield can be expanded in a finite series of ordinary space coordinate

functions:

F (x, θ, θ̄) = f1(x) + θψ1(x) + θ̄2(x) + θθf2(x) + θ̄θf3(x) + θσµ(x)θ̄νµ(x)+

θθ ¯θψ3(x) + θ̄θθψ4(x) + θθθ̄θf4(x).

The superfield has supersymmetry transformation as

δF (x, θ, θ̄) = i(ϵQ+ ϵ̄Q̄)F (x, θ, θ̄).

Since such a general superfield has much more components than necessary. So we can

introduce an operator Ôi that reduce the number of degrees of freedom. This operator

when acting on the superfield will gives us zero and it satifies

{Ôi, Qα} = {Ôi, Q̄α̇} = 0,

[Ôi, Qα] = [Ôi, Q̄α̇] = 0.

which depends on its fermionic or bosonic character. And in particular, if we define the

operators

Dα =
∂

∂θα
− (

b̄

ā
)(σµθ̄)α∂µ,

10



D̄α̇ =
∂

∂θ̄α̇
− (

b

a
)(θσµ)α̇∂µ.

Then the chiral superfields are defined as those which satisfy

D̄α̇Φ = 0

and the antichiral superfields are those satisfy

DαΦ̄ = 0.

A general superfield is a function on xµ, θαθ̄α̇ but the chiral superfield is a function of only

θα and the combination of

yµ = xmu − (
b

a
)θσµθ̄.

And the supersymmetry generators are simplified to

Qα → a
∂

∂θα
,

Q̄α̇ → āb+ b̄a

a
(θσµ)α̇∂

y
µ.

where the spacetime derivative ∂yµ is a derivative w.r.t y coordinates. Chiral superfield can

be expanded as

Φ(y, θ) = Aϕ(y) +Bθψ(y) + CθθF (y).

And its supersymmetry transformation is

Aδϕ(y) +Bθδψ(y) + CθθδF (y) =

i(aϵα
∂

∂θα
+
āb+ b̄a

a
(θσµaϵ̄)∂yµ)(Aϕ(y) +Bθψ(y) + CθθF (y)).

where

B =
A

ia
,

C =
A

2a2
,

āb+ b̄a = i.

11



in order to satisfy the infinitesimal supersymmetric transformations. For an antichiral

superfield, it is a function of θ̄α̇and the combination of

ȳµ = xµ + (
b̄

ā
)θσµθ̄.

And the supersymmetry generators are

Q̄α̇ → ā
∂

∂θ̄α̇
,

Qα → āb+ b̄a

ā
(θ̄σµ)α∂

ȳ
µ.

And antichiral superfield can be expanded as

Φ̄(ȳ, θ̄) = Āϕ̄(ȳ) + B̄θ̄ψ̄(ȳ) + C̄θ̄θ̄F̄ (ȳ).

And its supersymmetry transformation is

Āδϕ̄(ȳ) + B̄θ̄δψ̄(ȳ) + C̄θ̄θ̄δF̄ (ȳ) =

i(āϵ̄α̇
∂

∂θ̄α̇
+
āb+ b̄a

ā
ϵσµθ̄∂ ȳµ)(Āϕ̄(ȳ) + B̄θ̄ψ̄(ȳ) + C̄θ̄θ̄F̄ (ȳ)).

where

B̄ = − Ā

iā
,

C̄ =
Ā

2ā2
,

āb+ b̄a = i.

Requiring that the hermitian conjugate of the chiral superfield is an antichiral superfield,

we get

Ā = A∗, ā = a∗.

The chiral and antichiral superfields then expanded as

1

A
Φ(y, θ) = ϕ(y) +

1

ia
θψ(y) +

1

2a2
θθF (y),

1

A∗ Φ̄(ȳ, θ̄) = ϕ̄(ȳ)− 1

ia∗
θ̄ψ̄(ȳ) +

1

2a∗2
θ̄θ̄F̄ (ȳ).

12



The transformations of the fields are now simplified as

δΦ(y, θ) = i(aϵα
∂

∂θα
+
i

a
θσµϵ̄∂yµ)Φ(y, θ),

δΦ̄(ȳ, θ̄) = i(a∗
∂

∂θ̄α̇
ϵ̄−α̇ +

i

a∗
ϵσµθ̄∂ ȳµ)Φ̄(ȳ, θ̄).

A vector field is nothing but a real superfield, i.e.,

[V (x, θ, θ̄)]† = V (x, θ, θ̄).

In general, it can be expanded as

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) + θσµθ̄νµ(x)

+
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

+iθθθ̄θ̄[λ̄(x) +
i

2
∂µχ(x)σ

µ]− iθ̄θ̄θθ[λ(x)− i

2
σµ∂µχ̄(x)]

+
1

2
θθθ̄θ̄[D(x)− 1

2
∂µ∂µC(x)].

And there are too many degrees of freedom. Using the fact that if V is a vector multiplet so

is V +Φ+Φ†, where Φ is a chiral superfield. We can show that the gauge transformations

V → VWZ = V + Φ+ Φ†

with some chose chiral multiplet Φ can bring this vector multiplet into a simpler form

VWZ(x, θ, θ̄) = θσµθ̄νµ(x) + iθθθ̄θ̄λ(x)− iθ̄θ̄θθλ̄(x) +
1

2
θθθ̄θ̄D(x).

And this is the Wess-Zumino gauge.

To build a Lagrangian which is supersymmetric invariant, we first observe that the

highest component (F ) of a chiral superfield transforms under supersymmetry translation

as a total derivative, so its spacetime integral is a supersymmetry invariant. So the θθ

component of the chiral superfield is a supersymmetry invariant (up to total derivatives)

and thus a possible invariant term in the Lagrangian:

[Φ]θθ.

13



And also any combinations of the chiral superfields is also a supersymmetric invariant term

in the Lagrangian:

[Πn
i=1Φ

ni
i ]θθ.

Similarly for the antichirial superfield, it is the compenent term θ̄θ̄ which is invariant.

[Φ̄]θ̄θ̄.

And also any combinations of the chiral superfields is also a supersymmetric invariant term

in the Lagrangian:

[Πn
i=1Φ̄

ni
i ]θ̄θ̄.

For vector multiplets, the highest component term transforms as a total derivative. So

[V ]θθθ̄θ̄

is supersymmettic invariant.(up to total derivatives.)And a good candidate for a supersym-

metry invariant Lagrangian.A general supersymmetric invariant Lagrangian is

L = [K(Φ,Φ†)]θθθ̄θ̄ + [W (Φ)]]θθ + [W †(Φ†)]]θθ

where the real function K(Φ,Φ†) called Kähler potential and the holomorphic function

W (Φ) is the superpotential. We have also chosen W̄ =W † in order to satisfy the hermiticity

condition for the Lagrangian. For example we can choose the following Kähler potential

and W (Φ) superpotential to construct the free Lagrangian:

K(Φ,Φ†) = Φ†Φ

W (Φ) =
m

2
Φ2

We can generalise the free Lagrangian above for an arbitrary interacting case. And it is

called Wess-Zumino model when without gauge interactions. To derive a general super-

potential of a single chiral superfield W (Φ), we can expand this superpotential around its

bosonic component ϕ:

W (Φ) = W (ϕ) +
∂W

∂ϕ
(ϕ)(Φ− ϕ) + . . .

14



which gives

[W (Φ)]θθ = −∂W
∂ϕ

(ϕ)F − 1

2

∂2W

∂ϕ2
(ϕ)ψψ.

The Lagrangian of a single chiral superfield with

K(Φ,Φ†) = Φ†Φ

and a general superpotential W (Φ) gives

L = ∂µϕ∗∂µϕ+ ψ̄iσ̄µ∂µψ + F ∗F

−[
∂W

∂ϕ
(ϕ)F − 1

2

∂2W

∂ϕ2
(ϕ)ψψ + h.c.]

Then one can use the equation of motion of the auxiliary field to determine it:

F ∗ =
∂W

∂ϕ

and then the single field Wess-Zumino Lagrangian becomes

L = ∂µϕ∗∂µϕ− |∂W
∂ϕ

|2 + ψ̄iσ̄µ∂µψ − 1

2

∂2W

∂ϕ2
ψψ − 1

2

∂2W ∗

∂ϕ∗2 ψ̄ψ̄.

The its potential is

V = |F |2 = |∂W
∂ϕ

|2.

The most general renormalizable single field Wess-Zumino model is

W (Φ) = aΦ +
m

2
Φ2 +

λ

3
Φ3.

And the auxiliary field in this case is

F ∗ = a+mϕ+ λϕ2.

Then the Lagrangian in this case is

L = ∂µϕ∗∂µϕ− |a+mϕ+ λϕ2|2

+ψ̄iσ̄µ∂µψ − 1

2
(m+ 2λϕ)ψψ − 1

2
(m∗ + 2λ∗ϕ∗)ψ̄ψ̄.
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In order to show that the bosonic and fermionic masses are equal, we expand the bosonic

field

ϕ = ν + φ

with

a+mν + λν2 = 0, < φ >= 0.

Then the above Lagrangian takes the following form

L = ∂µφ∗∂µφ− |µφ+ λφ2|2

+ψ̄iσ̄µ∂µψ − 1

2
(µ+ 2λφ)ψψ − 1

2
(µ∗ + 2λ∗φ∗)ψ̄ψ̄

with

µ = m+ 2λν

which is the common bosonic and femionic mass.
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Chapter 2

Supersymmetry and supergravity in

a simple model

2.1 Rigid N = 1 Supersymmetry in a simple model

In this chapter, we will review a paper written by Peter van Nieuwenhuizen [13]. In this

paper, the author considers a simple model with only one coordinate t instead of 3 + 1

dimensional Minkowski space with coordinates x, y, z and t in order to demonstrate the

basic principles behind supergravity. In this model, we consider two point particles in t-

space. They are the real bosonic field ϕ(t) and the real fermionic field λ(t). Both these

fields have their space-dependence suppressed. ϕ(t) is a smooth of t and its derivatives are

well-defined. λ(t) is an independent Grassmann number for each fixed t. And so it satisfies

λ(t1)λ(t2) = −λ(t2)λ(t1). The Lagrangian in this model takes the following form:

LR =
1

2
ϕ̇2 +

i

2
λλ̇.

where dot represents the time derivative. And the anticommutators between λ(t) and λ̇

are

{λ(t), λ(t)} = 0, {λ(t), ˙λ(t)} = 0, { ˙λ(t), ˙λ(t)} = 0.

Since we require the Lagrangian to be hermitian, that is why we have a factor i for the

above Lagrangian. The term 1
2
ϕ̇2 is a truncation of the Klein-Gordon action to an x, y, z

independent field. And the term i
2
λλ̇ is the truncation of the Dirac action for a real spinor

to one of its components.
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Since the supersymmetry transformatios transform bosons into fermions, and vice versa,

the parameter ϵ must be anticommuting as ϕ is commuting and λ is anticommuting. And

at the same time, we want to make sure the dimension of the action to be zero, we claim

that the supersymmetry transformatios are:

δϕ = iϵλ,

δλ = −ϕ̇ϵ.

If we varies the fields in action S =
∫
LR(t) according to the transformation above, we get

δS =

∫
[ϵ̇(iϕ̇λ)− i

2

d

dt
(λϕ̇ϵ)]dt.

If we assume that the fields tend to zero at t = ±∞ plus the fact that ϵ is a constant, we

have δS = 0.

On ϕ, we can show that

[δϵ2, ϵ1]ϕ = (2iϵ1ϵ2)ϕ̇.

And on λ,

[δϵ2, ϵ1]λ = (2iϵ1ϵ2)λ̇.

Hence this reveals that the algebra of rigid supersymmetry transformations is a square root

of translations. In high dimensional theories, there will be an additional term proportional

to the field equation of the fermion in the above commutator on a fermion. Hence one

would need to introduce auxiliary fields to cancel this extra term.

2.2 N = 1 supergravity in a simple model

We can distinguish between rigidly supersymmetric field theories, which have a constant

symmetry parameter, and locally supersymmetric field theories whose symmetry parameter

is an arbitary space-time dependent parameter. As a gauge field is required in the local

symmetry, we have a gauge field called gravitino in locally supersymmetric field theories.
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And this local symmetry is different from the one in Einstein’s theory of gravitation. In

Einstein’s theory of gravitation, it is from the diffeomorphism invariance, and the gauge field

is the metric field gµν(X). Gauge theories of supersymmetry requires curved spacetime.

Hence gravity is needed to construct gauge theories of supersymmetry. And this is the

reason the local symmetry is called supergravity. The quanta of the metric gµν(X) is a

massless particle called gravitons. It is the bosonic partner of the gravitino.

We start with the same action SR as introduced in the previous section. Now we allow

ϵ to be time-dependent. Then we have

δSR =

∫ ∞

−∞
ϵ̇(iϕ̇λ)dt.

In order to cancel this variation, we introduce the gauge field, the gravitino ψ(t). Then we

can now couple it the Noether current of the rigid supersymmetry and use

δϕ = ϵ̇+ . . . .

And the action of this Noether current is

SN =

∫ ∞

−∞
(−iψϕ̇λ)dt.

Now if we vary the ψ in this action of Noether current, the variation of SR cancels out the

variation of SN . But the fields ϕ̇ and λ in SN will be varied too. And it will cause two

further variations in SN And we get

δSN =

∫ ∞

−∞
[−iψ{ d

dt
(iϵλ)}λ+ iψϕ̇ϵϕ̇]dt.

Since λλ = 0, so we have

δSN =

∫ ∞

−∞
iψ(ϕ̇ϕ̇+ iλλ̇)ϵdt.

In order to cancel the last term we can simply add a new term in δλ. But to get rid of the

first term, we have to introduce a new field, graviton h and couple it with ϕ̇ϕ̇. And this

shows the reason why local susy is a theory of gravity, and hence the name supergravity.
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Now we have another choice how to couple this new field h. It can also couple it with

iλλ̇. And for the most general case, we can consider to couple the linear combination of

both ϕ̇ϕ̇ and iλλ̇. So we add

SS = −
∫ ∞

−∞
h[ϕ̇ϕ̇− iλλ̇x]dt.

δh = −iϵψ,

δλ = −iψ̇ + i(1 + x)ψλϵ,

where x is an arbitary constant real parameter. Now the variation, δh = −iϵψ in this new

action −
∫
hϕ̇ϕ̇dt cancels the first term in δSN . And the new variation i(1 + x)ψλϵ in i

2
λλ̇

of LR and the new variation δh = −iϵψ in SS cancel the variation of δSN .

So far we have got rid of δSN . But now we have to consider the variation of the matter

fields in this new term SS. We seperate it into two cases. The first case is when x = 0 and

the second case is when x ̸= 0.

When x = 0, we need only vary the ϕ̇ in SS. This gives us

δLS = −2hϕ̇iϵ̇λ− 2hϕ̇iϵλ̇.

As the first term is proportional to the Noether current ϕ̇λ in SN and so we add a new

term in δψ to cancel it. And this new term is

δ(new)ψ = −2hϵ̇.

The second term in δLS is proportional to the free field equation of λ can so it can be

cancelled by a new term to the transformation law of λ. And this new term is 2hϕ̇ϵ.

Now this new term 2hϕ̇ϵ also produces a new variation in the Noether action SN .

δLN(δλ = 2hϕ̇ϵ) = −iψϕ̇(2hϕ̇ϵ).

And this term is proportional to ϕ̇ϕ̇, so we add a final term in δh to cancel it. This term is

2ihϵψ. Finally we have cancelled all the variations and obtain the following final results:
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So the final results are

L =
1

2
ϕ̇2 +

i

2
λλ̇− iψϕ̇λ− hϕ̇2,

δϕ = iϵλ,

δλ = −ϕ̇ϵ+ iψλϵ+ 2hϕ̇ϵ,

δψ = ϵ̇− 2hϵ̇,

δh = −iϵψ + 2ihϵψ.

Now we take a look at the susy algebra of this model. On ϕ, we find

[δ(ϵ2), δ(ϵ1)]ϕ = [2i(1− 2h)ϵ2ϵ1]ϕ̇+ i[−2iϵ2ϵ1ψ]λ.

There is a general coordinate transformation δψ = ξ̂ϕ̇ with ξ̂ = 2i(1− 2h)ϵ2ϵ1 at the right

hand side. This is the gravitational extension of the nongravitational rigid transformation

with parameter ξ = 2iϵ2ϵ1 that we found in the rigid susy commutator. And the second

term is a local susy transformation iϵ̂λ of ϕ with parameter ϵ̂ = −2iϵ2ϵ1ψ. On λ, we have

[δ(ϵ2), δ(ϵ1)]λ = ξ̂λ̇− ϕ̇ϵ̂+ 2hϕ̇ϵ̂.

The term ξ̂ constitutes a general coordinate transformation on λ. On ψ, we have

[δ(ϵ2), δ(ϵ1)]ψ =
d

dt
ϵ̂− 2h

d

dt
ϵ̂+ ξ̂ψ̇.

Finally on h, we have

[δ(ϵ2), δ(ϵ1)]h = −iϵ̂ψ + 2ihϵ̂ψ + ξ̂ḣ− ˙̂
ξh+

1

2
˙̂
ξ.

The terms ξ̂ constitutes a general coordinates transformation of h. Therefore the local susy

algebra closes on all fields uniformly.

For the case x ̸= 0, we just simply use the rescaling method. We rescale λ and ψ as

follows:

λ = (1 + 2hx)1/2λ̃,
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ψ(1 + 2hx)1/2 = ψ̃.

Hence we have produced the same action as the case x = 0,

L =
1

2
ϕ̇2 +

i

2
(1 + 2hx)λ̃

d

dt
λ̃− iλψϕ̇λ̃− hϕ̇2.

It shows that this action is also locally susy. Now we find the susy transformation under

this rescaling. First we have

δλ = −ϕ̇ϵ+ iψ̃λ̃ϵ+ 2hϕ̇ϵ.

Then we divide it by the factor (1 + 2hx)1/2 and use δh = −iϵψ + 2ihϵψ. We get

δλ̃ = −(1− 2h)ϕ̇ϵ̃+ i(
1 + x

1 + 2hx
)ψ̃λ̃ϵ̃.

For the case x = −1, we have

δλ̃ = −(1− 2h)ϕ̇ϵ̃,

δϕ = iϵ̃(1− 2h)λ̃.

We can find δh and δϕ̃ in a similar manner.

δh = (1− 2h)[(1− 2h) ˙̃ϵ− ḣϵ̃].

Now we apply the Noether method to compute the Lagrangian and the susy transformations

directly to gravity. And we will have slighly different results.

We first start with the rigid Lagrangian that we encountered before

LR =
1

2
ϕ̇2 +

i

2
λλ̇.

For local ξ, we consider the translation symmetry rule

δψ = ξϕ̇,

δλ = ξλ̇.
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The variation of the action becomes

δSR =

∫
[ϕ̇
d

dt
(ξϕ̇) +

i

2
λ
d

dt
(ξλ̇) +

i

2
ξλ̇λ̇]dt.

The third term vanishes since λ̇λ̇ = 0, and the second terms vanishes too after partial

integration. And after the partial integration of the first term, we have

δSR =

∫
[
1

2
ξ̇ϕ̇ϕ̇+

d

dt
(
1

2
ξϕ̇ϕ̇+

i

2
ξλλ̇)]dt.

Now since ϕ̇ϕ̇ is the Noether current for the translations. Hence we introduce the gauge

field h for gravity. Hence we obtain

LN = −hϕ̇ϕ̇,

δh =
1

2
ξ̇.

We variate ϕ̇ in LN and get

δSN =

∫
−2hϕ̇

d

dt
(ξϕ̇)dt.

And this can be cancelled out by an additional term in δh. And this term is ξḣ−hξ̇. Hence

we have

L =
1

2
ϕ̇2 +

i

2
λλ̇− hϕ̇2.

And it is invariant under

δϕ = ξϕ̇,

δλ = ξλ̇,

δh =
1

2
ξ̇ + ξḣ− ξ̇h.

Now we add the coupling to the gravitino −iψϕ̇λ. So we require that it should also be

invariant under the local ξ transformation. And it turns out that δψ should transform as

δψ = ξψ̇.

To see that, we compute δ(−iψϕ̇λ). We obtain

δ(−iψϕ̇λ) = −iδψϕ̇λ− iψ[
d

dt
(ξϕ̇)]λ− iψϕ̇ξλ̇.
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Perform a partial integration on the last two terms, we get

−iδψϕ̇λ+ iψ̇ξϕ̇λ.

And these two terms can be cancelled by choosing δψ = ξψ̇. After rescaling λ =
√
1 + 2hxλ̃

and ψ
√
1 + 2hx = ψ̃, and setting x = 1, we have

L =
1

2
ϕ̇2 +

i

2
λλ̇− h(ϕ̇2 + iλλ̇)− iψϕ̇λ,

δϕ = ξϕ̇,

δh =
1

2
ξ̇ + ξḣ− ξ̇h,

δλ = ξλ̇+
1

2
ξ̇λ,

δψ = ξψ̇ − 1

2
ξ̇ψ.

where we have dropped the tildas. And for the susy transformation rules, we have the

followings:

δϕ = iϵ(1− 2h)λ,

δλ = −(1− 2h)ϕ̇ϵ,

δψ = (1− 2h)[(1− 2h)ϵ̇− ḣϵ],

δh = −(1− 2h)iϵψ.

This action can also be rewritten as

L =
1

2
(1− 2h)(ϕ̇2 + iλλ̇)− iψϕ̇λ.
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Chapter 3

Supergravity in 4-d

In this chapter we are going to review the physics reports titled ”Supergravity” written

by P. van Nieuwenhuizen [14]. Papers related to supergravity in 4 − d can also be found

in [15] [16] [17] .In the last chapter, we have seen that supergravity is the gauge theory of

supersymmetry in our toy model. Since we have only considered one dimensional coordinate

in this toy model we will genearlise it into the case when we have 4-dimensional space-time

coordinates in this chapter.

3.1 Supergravity

Let us denote a scalar, psesudoscalr and spin 1/2 field as A, B and λ, respectively in this

chapter. For global symmetry, we have seen from chapter 1 that the Lagrangian is a sum

of the Klein-Gordon actions and the Dirac action. We state in here again since we want to

follow the same notations as in P. van Nieuwenhuizen’s papers.

L = −1

2
(∂µA)

2 − 1

2
(∂µB)2 − 1

2
λ̄/∂λ, λ̄ = λ†γ4.

Its globally invariant supersymmetric rules are:

δA =
1

2
ϵ̄λ,

δB = − i

2
ϵ̄γ5λ,

δλ =
1

2
/∂(A− iBγ5)ϵ.

25



To see how supergravity arises, we make ϵα local. Then for example the spin 1
2
field now

transforms as

δλ =
1

2
/∂(A− iBγ5)ϵ(x).

This transformation does not have the ∂µϵ term because λ is a matter field and only a

supersymmetry gauge field has this deriative term. When ϵ is a constant, the variation of

the action is zero. So for the local ϵ, the variation of the action must be proportional to

∂µϵ. So we get

δI =

∫
d4x(∂µϵ̄(x))j

µ
N .

where jµN is the Noether current. For constant ϵ, we have

δL = ∂µK
µ

where

Kµ = −1

4
ϵ̄γµ[/∂(A− iγ5B)]λ.

And in the local case we have

δL = ∂µK
µ + (∂µϵ̄(x))s

µ

for some sµ. And indeed we can show that sµ is just the Noether current. Now we can

apply the Noether method. So we add the following Noether coupling action:

IN =

∫
d4x(−kψ̄µ)j

µ
N .

and requires that gravitino field transforms as

δψµ ∼ ∂µϵ(x) + . . . .

By dimensional analysis, we can see that we require a dimensional coupling k to appear

such that

δψµ = k−1∂µϵ(x) + . . . .
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Now we have three arguments which indicate that local supersymmetry requires gravity.

The first argument is from the appearence of the dimensional coupling k. The second

argument can be seen from

[δ(ϵ1), δ(ϵ2)]B ∼ 1

2
(ϵ̄2(x)γ

µϵ1(x))∂µB.

Hence it means that there is a translation of 1
2
ϵ̄2(x)γ

µϵ1(x) and it is different from point to

point. This is the same as a general coordinate transformation in general relativity. To see

the third argument we variate IN . Then we have new terms due to δA, δB , δλ in IN .By

considering only the terms quadratic in A and B, we have

δ(I + IN) =

∫
d4x

k

2
(ψ̄µγνϵ)(T

µν(A) + T µν(B))

where

Tµν(A) = ∂µA∂νA− 1

2
δµν(∂λA)

2

is the energy momentum tensor of the field A. In order to cancel this term, we add a

second Noether coupling with a new field gµν to the Noether current of translations, 1
2
T µν

and require that it transforms as

δgµν = −k
2
ψµγνϵ−

k

2
ψ̄νγµϵ.

Since ferminos must present in supersymmetry, hence we use tetrads eaµ to describe the

gravitational field instead of gµν . And the supersymmetry transformation of eaµ is

δemµ =
1

2
kϵ̄ψµ.

And for the transformation law of the gravtino, we have

δψa
µ = k−1Dµϵ

where

Dµϵ = ∂µϵ+
1

2
ωmn
µ σmnϵ
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since we are in curve space. The gauge fields must also satisfy the global supersymmetry.

For the helicity(2, 3/2), its representation of global supersymmetry are

δgµν =
k

2
(ϵ̄γµψν + ϵ̄γνψµ),

δψµ =
1

2k
(ωmn

µ )Lσmnϵ

where L stands for linearised and ϵ is some constant.

3.2 The gauge action of simple supergravity

There are three fields in the gauge action. They are the tetrad emµ , the gravintino ψa
µ and

the connection ωmn
µ . The ωmn

µ should not be physical because emµ and ψa
µ have already

formed a boson- fermino doublet with adjacent helicities ±2 and ±3
2
. So we start out with

two independent fields emµ and ωmn
µ . Then ωmn

µ is eliminated as an independent field by

solving its nonpropagating field equation, and ωmn
µ becomes a function of emµ as a result.

And this soultion actually satisfies the tetrad postulate

∂µe
m
ν + ωmn

µ (e)enν − Γα
νµ(g)e

m
α = 0.

We will discuss how to obtain the dependence of ωmn
µ on other fields by Palatini formalism in

next section. Now we take a look at the bonsonic part of the gauage action of supergravity.

It takes the usual hilbert action R Usually we would define the Hilbert action in terms of

the connection Γα
νµ as follows

R = δσµg
νρRµ

νρσ(Γ)

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γλ

νσΓ
µ
νρ − Γλ

νρΓ
µ
λσ.

But it is more fundamental and meaningful to define the hilbert action by using the spin

connection ωmn
µ rather than Γα

νµ. And group theory gives us the following curvature

Rmn
µν (ω) = ∂µω

mn
ν − ∂νω

mn
µ + ωmc

µ ωm
νc − ωmc

ν ωn
µc.
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Now we can write down the Hilbert action as

L(2) = − 1

2k2
√
gR(g,Γ) = − 1

2k2
eR(e, ω),

R(e, ω) = eµνenµRµνmn(ω)

where e = det emµ . For the ferminonic part of the gauge action, we expect it is linearised

and quadratic in ψa
µ and contain only one derivative. In order to make sure that it has

positive energy, we have the following same action as the Rarita and Schwinger action

L = −1

2
ϵµνρσψ̄µγ5γν∂ρψσ.

And it is unique up to the shifting by λγσγ·ϕ with λ ̸= −1
4
, and ψσ = ∂σϵ(x). And in the

curve space, we have the following extension

L3/2 = −1

2
ϵµνρσψ̄µγ5γνDρψσ

Dρψσ = (∂ρ +
1

2
ωmn
ρ σmn)ψσ.

It can be shown that the Noether method that we used previously in the Wess-Zumino

model to gravity can actually give us these gauge actions shown above. In the last section

we have arrived the following matter action

I + IN =

∫
d4x

e

2
[(∂µA∂νA+ ∂µB∂νB)gµν + λ̄ /D(ω(e))λ− kψ̄µ(/∂(A+ iγ5B))γµλ]

But we have not considered the term with AB. In the following, we see how the gauge

actions arised when we try to cancel this term. Now we vary λ in the Noether term and

consider the AB term. We have

δI + IN =

∫
d4x− ik

2
(ψ̄µγ5γτ ϵ

ρσµτ )(γ5ϵ)(∂ρA∂ρB).

So we can cancel the above variation by adding either terms to the action or to the transfor-

mation laws. First we do a partial integrate ∂ρA or ∂ρB, and interpret Dρ(ψ̄µγ5γτ )ϵ
ρσµτ as

the gravitino field equation. Then by adding to δψµ a term ik
4
γ5ϵ(A∂µB), it can cancel part
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of the above variation. And finally th same gravitino action L3/2 = −1
2
ϵµνρσψ̄µγ5γνDρψσ is

arised as before. So far, up to this point, we only obtain the gravitino action with the spin

connection ω(e) but notω(e, ψ) but we could find an extra term which turn ω(e) into ω(e, ψ)

at the next level in k. The Noether method used above by requiring gauge invariace of the

matter to obtain gauge action is peculiar to supergravity. It comes from the appearence

of the matter fields in the gauge field transformations if one does not use auxiliary fields.

And auxiliary fields can be viewed as Lagrange multipliers to get rid of the matter terms.

3.3 Palatini formalism and Flat supergravity with tor-

sion

Now we are going to solve the field equation for the spin connection. And from there, we

can find the torsion induced by gravitinos. By using the following identity

ϵµνρσϵmncde
m
µ e

n
ν = 2e(eρce

σ
d − eσc e

ρ
d)

we can rewrite the Hilbert action as

L(2) =
1

8k2
ϵµνρσϵmncde

m
µ e

n
νR

cd
ρσ(ω).

After varying the spin connection, we have

δRcd
ρσ(ω) = Dρδω

cd
σ −Dσδω

cd
ρ ,

Dρδω
cd
σ = ∂ρδω

cd
σ + ωce

ρ δω
d
σe + ωde

ρ δω
c
σe.

After partial integration, we have

δL(2) =
1

2k2
ϵµνρσϵmncd(Dσe

m
µ )e

n
νδω

cd
ρ

Dσe
m
µ = ∂σe

m
µ + ωmn

σ enµ.

We then vary the spin connection in the Rarita-Schwinger action

δL3/2 = −1

4
ϵµνρσ(ψ̄µγ5γνσcdψσ)(δω

cd
ρ ).
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By using the fact that

ψ̄µγ5γνσcdψσ =
1

2
ψ̄µγ5(ecνγd − edνγc)ψσ +

1

2
ebνϵbcdmψ̄µγ

mψσ

and ψ̄µγ5γdψσ is symmetric in µ and σ while ψ̄µσ
aψσ is antisymmetric. We get

δL3/2 = −1

8
ϵµνρσϵncdm(ψ̄µγ

mψσ)e
n
ν (δω

cd
ρ ).

By comparing the variation of Hilbert and Rarita-Schwinger action above, we have

Dµe
m
ν −Dνe

m
µ =

k2

2
(ψ̄µγ

mψν)

Now we introduce the contorsion tensor kmn
µ defined by

ωmn
µ = ωmn

µ (e) + kmn
µ ,

ωµmn(e) =
1

2
eνm(∂µenν − ∂νenµ)−

1

2
eνn(∂µemν − ∂νemµ)−

1

2
eρme

σ
n(∂ρecσ − ∂σecρ)e

c
µ.

With Dµe
m
ν −Dνe

m
µ = k2

2
(ψ̄µγ

mψν) and the first tetrad postulate, we have

∂µe
m
ν + ωm

µν(e)− (µ↔ ν) = 0,

kµmν − kνmµ =
k2

2
ψ̄µγmψν .

Finally by substituting the above equation, we obtain

ωµmn(e, ψ) = ωµmn(e) +
k2

4
(ψ̄µγmψν − ψ̄µγnψm + ψ̄mγµψn).

Now we can apply the second tetrad postulate

∂µe
a
ν + ωa

µν(e)− Γα
νµe

a
α = 0.

Then we can get an expression for Γα
νµ from the above equation of ωµmn. We define the

antisymmetric part of Γα
νµ as the torsion.

Sα
µν =

1

2
(Γα

µν − Γα
νµ).
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And since

Γα
µν − Γα

νµ = −kαµν + kανµ,

hence the torsion is

Sα
µν = −k

2

4
ψ̄µγαψν .

Finally, by putting all the results together, we have

ωµmn =
1

2
(Rµn,m −Rµm,n +Rmn,µ)

Rµν,m = −∂µemν + ∂νemµ +
k2

2
ψ̄µγmψν ,

where Rµb,m = eνbRµν,m. Supercovariant is defined as an objects without ∂ϵ terms. It is

easily can see that the spin connection, indeed, is supercovariant.

In Einstein-Cartan theory, there is well-known symmetry in the Hilbert action∫
d4xeR(e, ω(e) + τ) =

∫
d4xe[R(e, ω(e))− τµνρτ

ρνµ + (τλλµ)
2]

under

ωab
µ → ωab

µ + τabµ .

with τabµ = −τ baµ In supergravity, we have a similar identity:

L2(e, ω(e, ψ) + τ) + L3/2(e, ω(e, ψ) + τ)

= L2(e, ω(e, ψ)) + L3/2(e, ω(e, ψ)) +
1

2k2
(τµνρτ

ρνµ + (τλλµ)
2) + · · ·

where · · · are total derivatives. We can choose particularly

τabµ = ωab
µ (e, ψ).

With this choice, the hilbert action will vanishes. Morever the spin connection will disap-

pear in the gravitino action. Now if we use the equation Rµν,m = −∂muemν + ∂nuemµ +

k2

2
ψ̄µγmψν which we derived earlier, we can rewrite the action of supergravity without the

curvature R but with the torsion terms

I =

∫
d4x[−1

2
ϵµνρσψ̄µγ5γν∂ρψσ −

1

8
R2

µνa −RµνaR
aνµ +

1

2
R2

νλλ]

32



where

Rµνa = −∂µeaν + ∂νeaµ +
k2

2
ψ̄µγaψν .

3.4 The 1.5 and 2.0 order formalism and Gauge sym-

metries

From the previous sections, we have seen that the spin connection ωab
µ serves as the gauge

field for the Local Lorentz transfromations. But it is only an auxiliary field and hence it

can be eliminated by solving algebraically its equation of motion. This formulation with

the spin connection as an auxiliary field is called the first order formulation. And the

one which uses the vielbein and the gravitino at the very beginning is called second order

formulation. And finally we have a mixed case, which is called the 1.5 formalism.

Let us denote ψα
µ as a complex 2-component Weyl spinor field , where α are Weryl

spinor indices. Its complex conjugate is denoted by ψ̄α̇
µ . In the first order formulation, the

Lagrangian is a function of the vielbein, gravitino, spin connection and their derivatives

L =
1

2
eEµ

b E
ν
aR

ab
µν + 2(▽µψνσρψ̄σ + ψσ + ψσσρ ▽µ ψ̄ν)ϵ

µνρσ

where we have denoted the inverse of the vielbein by Eν
a , and

▽µψ
α
ν = ∂µψ

α
ν − 1

2
ωab
µ (ψνσab)

α,

▽µψ̄
α̇
ν = ∂µψ̄

α̇
ν − 1

2
ωab
µ (σ̄abψ̄ν)

α̇.

To determine ωab
µ , we just vary it in the largrangian above. And one can get

ωab
µ = Eνa∂[µe

b
v] − Eνb∂[µe

a
v] − eµcE

νaEρb∂[νe
c
ρ] + 2i(ψµσ

[aψ̄b] + ψ[aσb]ψ̄µ + ψ[aσµψ̄
b]).

Once we substitute the above expression of ωab
µ to the Largrangian in the very beginning,

then we have the second order formulation. To see how we get the 1.5 order formulation,

we just use a trick to simplify the variation of second order action as it is derived from

33



the first order. The argument is as follows: Suppose we have a Largrangian L(ϕ,H) which

involves fields ϕi and HA. And the HA have the solution HA = HA(ϕ) from the equation

of motion. By considering the second order Largrangian L(ϕ,H(ϕ)), we can vary it with

the fields ϕi. Then we have

δL(ϕ,H(ϕ)) ∼ [δϕi∂L(ϕ,H)

∂ϕi
+ δHA(ϕ)

∂L(ϕ,H)

∂HA
]H=H(ϕ) = [δϕi∂L(ϕ,H)

∂ϕi
]H=H(ϕ).

where L(ϕ,H) is the first order Lagrangian and∼ deonotes equality up to a total divergence.

The term [∂L(ϕ,H)
∂HA ]H=H(ϕ) = 0 because HA(ϕ) solve the equation of motion.

Finally we can show that the Largrangian L under 1.5 order formalism is invariance

under the following spacetime diffeomorphisms, local Lorentz transformations and local

SUSY

δDiffeoe
a
µ = ξν∂νe

a
µ + ∂µξ

νeaν ,

δDiffeoψµ = ξν∂νψµ + ∂µξ
νψν ,

δDiffeoψ̄µ = ξν∂νe
a
µ + ∂µξ

νψ̄ν ,

δLorentze
a
µ = ξab e

b
µ,

δLorentzψ
α
µ =

1

2
ξab(ψµσab)

α,

δLorentzψ̄
α̇
µ = −1

2
ξab(σ̄abψ̄µ)

α̇,

δSussye
a
µ = 2iξσaψ̄µ − 2iψµσ

aξ̄,

δSussyψ
α
µ = ▽µξ

α,

δSussyψ̄
α̇
µ = ▽µξ̄

α̇.

For the proof, please find it in [14] and [18].
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Chapter 4

Extended supergravities

In this chapter we will take a look at the extended supergravities [14] which contain more

than one gravitino. This is called N-extended supergravities because N represents the

number of real gravitinos. For example when N = 0 and N = 1, we have general relativity

and simple gravity, which we have discussed in the last chapter, respectively. There are

only eight viable supergravities, 1 ≥ N ≥ 8. It is because for N > 8, one would have

particles with spins larger then two and also more than one graviton. And it is well-known

that the free field action for spin 5/2 is unique and there is no consistence when it is coupled

to either gravity or to any simpel matter field. Hence we stop at spin 2, and supergravity

at N = 8.

4.1 The N = 2 model

So far, we have seen the couplings of chiral and vector multiplets to minmimal N = 1

supergravity. But there is another N = 1 multiplet that one may consider. It is so-called

gravitino multiplet which consists of a spin 3/2 field ψµ and a spin 1 field Aµ. Because

of the addition of this massless gravitino, we have to introduce another local symmetry.

Therefore, coupling the gravitino multiplet to the N = 1 supergravity multiplet gives rise to

a theory, which has two local symmetries and hence it is referred to as N = 2 supergravity.

Thus N = 2 supergravity comprises one spin 2 field, two spin 3/2 fields and a spin 1

field. And this theory can be extended even further by coupling more gravitino multiplets

and arrives at theories with larger extended symmetry. The particle content of the most

common multiplets with extended symmetry can be summarised at the following table In
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λ -2 -3/2 -1 -1/2 0 1/2 1 3/2 2

N = 2 0 0 0 0 0 0 1 2 1 sugra

0 0 0 0 1 2 1 0 0 vector

0 0 0 1 2 1 0 0 0 hyper

N = 4 0 0 0 0 1 4 6 4 1 sugra

0 0 1 4 6 4 1 0 0 vector

N = 8 1 8 28 56 70 56 28 8 1 sugra

Table 4.1: The various multiplets for N = 2, 4 and 8 supersymmetry. λ denotes
the helicity of the states.

N = 2 model, it has a large symmetry O(2) which rotates the two gravitinos into each

other. This model can unify eletromagnestism with gravity. The action is

L = −e
2
R(e, ω)− e

2
ψ̄i
µΓ

µρσDp(ω)ψ
i
σ −

e

4
F 2
µγ +

k

4
√
2
ψ̄i
µ[e(F

µν + F̂ µν)+
1

2
γ5(F̃

µν +
˜̂
F µν)]ψj

νϵ
ij

and it is invariant under general coordinate, local Lorentz and Maxwell transformations

δAµ = ∂µΛ

as well as the following two local supersymmetries

δemµ =
k

2
ϵ̄iγmψi

µ,

δAµ =
k√
2
ϵ̄iψj

µϵ
ij

δψi
µ = Dµ(ω)ϵ

i +
k

2
√
2
ϵij(F̂µλγ

λ +
1

2
e
˜̂
Fµλγ

λγ5)ϵ
j.

where

F̃µν = ϵµνρσF
ρσ

and

F̂µν = (∂µAν −
k

2
√
2
ψ̄i
µψ

j
νϵ

ij)− (µ↔ ν).
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And each gravitino gauges one local supersymmetry as can be seen from δψi
µ = ∂µϵ

i+ more.

The maximal supersymmetry group of the S-matrix of supersymmetry algebras contain-

ing the Poincare algebra has been shown that it is U(2). But in fact the field theory has

this symmetry only on-shell. For Off-shell, it is SU(2) which remains. These symmetries

are

δψL
µ = iω · τψL

µ

δψR
µ = −iω · τψR

µ

where

ψµ = (ψ1
µ, ψ

2
µ)

T ,

ψL
µ =

1

2
(1 + γ5)ψµ

ψR
µ =

1

2
(1− γ5)ψµ.

And For U(1),

δψµ = −iγ5ψµ,

δF̂µν = ieϵµνρσF̂
ρσ.

Hence the SU(2) rotates ψL as (2) and ψR as (2̄). And the U(1) is a combined chirality-

duality transformations.

It is well-known that when we couple the photon minimally to the femions, we need a

cosmological constant and a mass like term in the action. So in the N = 2 model, we also

add a cosmological constant to the action and get a further modification of the Noether

method. The extra terms are

L(cosm) = 6eg2 + 2eψ̄i
µσ

µνψi
ν −

1

2
ψ̄i
µΓ

µρσ(Dρψ
i
σ + gϵikAρψ

k
σ),

δψi
µ = Dµ(ω(e, ψ))ϵ

i + gγµϵ
i + gϵikAµϵ

k

where g is a dimensionless gauge coupling.
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4.2 The N = 3 model

Now we take a look at theN = 3 model. In this model, the Abelian photon gauge invariance

turns into a non-Abelian Yang-Mills invariance in de-Sitter space. As in the N = 2 model,

we also need a cosmological constant and a mass term when coupling the triplet of photons

to the gravitinos. The action in this model is

L = L(Kinetic) + 1

2
(LNoether

bare + LNoether
superconv) + L(cosm)

where L(Kinetic) is the kinetic terms for emµ , ψ
i
µ, A

i
µ and λ with i = 1. . . 3 and

L(cosm) = 6eg2 + 2eψ̄i
µσ

µνψi
ν −

1

2
ψ̄i
µΓ

µρσ(Dρψ
i
σ + gϵijkAj

ρψ
k
σ).

The bare Noether coupling is a sum of the Noether couplings of the (3
2
, 1) and (1, 1

2
) systems

to the (2, 3
2
) system. And it is defined as

LNoether
bare = − 1

2
√
2
ψ̄i
µ(eF

µν,j +
1

2
γ5F̃

µν,j)ψk
νϵ

ijk +
1

2
(ψ̄i

µσ
αβγµλ)(F i

αβ).

Finally the supercovariantised Noether coupling follows from the local supersymmetry

transformation rules

δemµ =
1

2
ϵ̄iγmψi

µ,

δλ =
1

2
(σµνϵi)(F̂ i

µν),

δAi
µ =

1√
2
ϵijkϵ̄jψk

µ −
1

2
ϵ̄iγµλ,

δψi
µ = Dµ(ω(e, ψ, λ))ϵ

i+
1

2
√
2
ϵijk(σρσγµϵ

k)(F̂ j
ρσ)+

1

4
√
2
ϵijk[(ψ̄j

µγρλ)(γ
ρϵk)+(ψ̄j

µγργ5λ)(γ5γ
ρϵk)]

+
1

8
(λ̄γ5γ

ρλ)(γργµγ5ϵ
i) + gϵijkAj

µϵ
k + gγµϵ

i.

δψµ is no longer supercovariant. The noncovariant terms involve the spin 1/2 fields. This

means that there must be some extra terms in the commutator of two local supersymmetry

transformatins. The first one is an extra local Lorentz transformation with parameter.

(2
√
2)−1ϵijk(ϵ̄i2ϵ

k
1F̂

j
mn +

e

2
ϵ̄i2γ5ϵ

k
1
ˆ̃F j
mn)
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and an extra local supersymmetry transformation with parameter

(2
√
2)−1ϵijk(ϵ̄j2ϵ

k
1λ− ϵ̄j2γ5ϵ

k
1γ5λ)

and finally an O(3) Yang-Mills gauge transformation with parameter

Λi = (2
√
2)−1ϵijk(ϵ̄j2ϵ

k
1)−

1

2
ϵ̄j2γ

µϵj1A
i
µ,

δAµ = ∂µΛ
i + gϵijkAj

µΛ
k,

δemµ = 0,

δψi
µ = gϵijkψj

µΛ
k,

δλ = 0.

For g = 0 on-shell, there is a U(3) global invariance. However there is only O(3) invariance

left when it is off-shell. This is due to the fact that all other symmetries involve not only

chiral transformations but also duality transfromations as well. The precise rule follows

from the truncation from the U(4) group of the SO(4) version of the N = 4 model. The

truncation here means letting certain fields equal to zero. For g ̸= 0, the Yang-Mills

coupling includes the bare fields Ai
µ and the mass term which break the chiral invariance,

and hence it is left with O(3) invariance.

In N = 3 model, we can actually obtain other theories by consistence truncation. It

means that while we are performing the truncation, we also require that their variations

also vanish. For example, when we let A1
µ = A2

µ = ψ3
µ = λ = 0 in the N = 3 model, it will

reduce to the N = 2 model. However, if we, instead, let A2
µ = A3

µ = ψ2
µ = ψ3

µ = 0 , then we

will have (2, 3/2) + (1, 1/2) Maxwell-Einstein system.

4.3 The N = 4 model

So far, there are only twoN = 4 discovered. They are SO(4) model with fields (e, ψ
′i, V ij

µ , λ
′i, A,B

′
)

and the SU4 model with fields (e, ψi, Ak
µ, B

k
µλ

i, ϕ, B). The six fields V ij
µ are all vector fields,
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but the three Ak
µ are vector fields while the Bk

µ are axial vector fields. for SU(4) model,

one can actually obtain it by reduction of the N = 1 model in d = 10 dimensions.

It is interesting to see that these two theroies are equivalent at the classical level by

using a transformation law of the field which turns the one action into the other. For more

details, please see [14].
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Chapter 5

Conclusions

We have seen that supergravity plays such an important role in modern physics as it pre-

dicts the existence of a boson particle known as the graviton and its femionic superpartner,

the gravitino. Its presence is likely to improve the quantum behavior of the theory, par-

ticularly interesting in the context of gravity, a notoriously non-renormalizable theory. In

this dissertation, the basic idea of the supergravity has been demonstrated through both

the simple model with only one coordinate t and also in N = 1 4 − d model. Some ex-

tended supergravity models have also been included. To extended all these simple models

is important. For example, supergravity appears as the low energy effective action for fun-

damental theories such as string theories, which generically live in higher dimensions. So

one of the suggestions of future works is to investigate other extensions of the supergravity

model which are not covered in this dissertation.
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